What's new on Wikilite
Key updates
The biology and measurement of immunoglobulins
1 - The clinical importance of serum free light chain and Hevylite analysis
1.1. Introduction
1.2. Overview of established uses
1.3. Recent Progress
1.3.1. Monoclonal FLC studies
1.3.2. Polyclonal FLC studies
1.3.3. HLC studies
1.3.4. New guidelines
2 - A brief history of diagnostic tests for myeloma: Bence Jones protein and beyond
2.1. The identification of Bence Jones protein
2.2. The identification of serum monoclonal proteins
2.3. Free light chain assays
2.4. Immunoglobulin heavy/light chain assays
3 - The biology of immunoglobulins
3.1. Immunoglobulin structure
3.2. Immunoglobulin diversity
3.3. Isotypic and allotypic variation of light chain constant domains
3.4. Immunoglobulin and FLC production
3.5. Clearance and metabolism
3.5.1. Half-life of sFLCs
3.5.2. Renal clearance of FLCs
3.5.3. Half-life of IgG, IgA and IgM
4 - Laboratory techniques for monoclonal immunoglobulin measurement
4.1 Introduction
4.2 Detection and quantification of serum monoclonal proteins
4.2.1. Serum protein electrophoresis
4.2.2. Capillary zone electrophoresis
4.2.3. Diagnostic sensitivity of SPE and CZE compared with other laboratory techniques
4.2.4. Serum free light chain analysis
4.2.5. Hevylite immunoassays
4.3. Typing of serum monoclonal proteins
4.3.1. Immunofixation electrophoresis
4.3.2. Immunosubtraction
4.4. Other serum assays
4.4.1. Total immunoglobulin assays
4.4.2. Total κ/λ assays
4.5. Detection and quantification of urine monoclonal proteins
4.5.1. Urine protein electrophoresis
4.5.2. Urine capillary zone electrophoresis
4.5.3. Urine free light chain assays
Practical considerations of Freelite assays
5 - Development and validation of Freelite immunoassays
5.1. Assay overview
5.2. Polyclonal antisera versus monoclonal antibodies
5.3. Antisera specificity testing
5.3.1. Immunoelectrophoresis
5.3.2. Western blot analysis
5.3.3. Haemagglutination assays
5.3.4. Nephelometry
5.4. Accuracy and standardisation
5.5. Maintaining batch-to-batch consistency of polyclonal antisera-based latex reagents
5.6. Overview of Freelite assay validation
5.7. Overview of Freelite kit manufacture
5.8. Immunoassay development on different platforms
6 - Freelite reference intervals
6.1. Freelite® serum reference intervals
6.1.1. Ethnic influences
6.2 Borderline Freelite results
6.3 Freelite renal reference intervals
6.4 Freelite urine reference intervals
7 - Implementation and interpretation of Freelite immunoassays
7.1. Implementation of Freelite assays
7.1.1. Choice of instrument
7.1.2. Reporting units
7.1.3. Choice of sample
7.1.4. Sample and reagent stability
7.1.5. Changing reagent lot or instrument
7.2. Interpretation of Freelite assays
7.2.1. Normal reference intervals
7.2.2. Terminology
7.2.3. The FLC dot plot
7.2.4. Result interpretation
7.2.5. sFLCs and intact immunoglobulins are independent tumour markers
7.2.6. Biological variation
7.3. Sample redilution
7.4. Sample linearity
7.4.1. Managing non-linearity
7.5. Antigen excess
7.5.1. Instruments with automated antigen excess checking
7.5.2. Instruments without automated antigen excess checking
7.5.3. Incidence of antigen excess
7.6. Polymerisation
7.7. Discrepant results
7.7.1. Monoclonal FLCs in urine, normal sFLCs
7.7.2. Monoclonal FLCs detectable by sIFE but undetectable by sFLC immunoassay
7.7.3. No monoclonal proteins detectable by any routine laboratory method
7.8. Biclonal gammopathies
8 - Other free light chain immunoassays
8.1. Introduction
8.2. Overview of commercial FLC assays
8.3. Monoclonal vs. polyclonal antisera
8.3.1. Monoclonal antibody production
8.3.2. Polyclonal antisera production
8.3.3. Requirements for anti-FLC antibodies for use in FLC immunoassays
8.4. Analytical performance of monoclonal and polyclonal antibody-based FLC assays
8.4.1. Calibration
8.4.2. Precision
8.4.3. Linearity
8.4.4. Antigen excess
8.4.5. Sample redilution
8.5. Reference intervals
8.5.1. Normal reference intervals
8.5.2. Renal reference interval
8.6. Clinical performance
8.6.1. Comparison of absolute values
8.6.2. Diagnostic performance in MM
8.6.3. Rationale for the diagnoses of LCMM missed by monoclonal antibody-based FLC assays
8.6.4. Monitoring MM
8.6.5. Diagnostic performance in cast nephropathy
8.6.6. Diagnostic performance in AL amyloidosis
8.6.7. Monitoring AL amyloidosis
8.7. Compliance with guidelines
8.8. Conclusion
Practical considerations of Hevylite assays
9 - Development and validation of Hevylite immunoassays
9.1. Assay overview
9.2. Polyclonal antisera production
9.3. Antisera specificity testing
9.4. Accuracy and standardisation
9.4.1. Primary standards and internal reference standards
9.4.2. Kit calibrators and controls
9.4.3. Calibration curves
9.4.4. Correlation with total immunoglobulin measurements
9.5. Maintaining batch-to-batch consistency of polyclonal antisera-based reagents
9.6. Overview of Hevylite assay validation
9.7. Overview of Hevylite kit manufacture
9.8. Immunoassay development on different platforms
10 - Hevylite reference intervals
10.1. Introduction
10.2. Standardisation of immunoglobulin assays
10.3. Hevylite standardisation
10.4. Hevylite reference intervals
10.4.1. Binding Site Hevylite reference intervals
10.4.2. Other Hevylite reference intervals
10.5. Choice of reference interval
11 - Implementation and interpretation of Hevylite immunoassays
11.1. Implementation of Hevylite assays
11.1.1. Choice of instrument
11.1.2. Reporting units
11.1.3. Choice of sample
11.1.4. Sample and reagent stability
11.1.5. Changing batch of reagent or instrument
11.2. Interpretation of Hevylite assays
11.2.1. Normal reference intervals
11.2.2. Terminology
11.2.3. Result interpretation
11.2.4. The HLC dot plot
11.2.5. Freelite and Hevylite are independent tumour markers
11.2.6. Biological variation
11.3. Linearity
11.3.1. Managing non-linearity
11.4. Antigen excess
11.5. Comparison of Hevylite results with other immunoglobulin tests
11.5.1. Comparison of Hevylite and total immunoglobulin measurements
11.5.2. Comparison of Hevylite and immmunoglobulin measurements by SPE
11.5.3. Comparison of Hevylite and immunofixation electrophoresis
Monoclonal gammopathies
12 - An overview of multiple myeloma and related disorders
12.1. Introduction
12.2. Multiple myeloma and related malignant disorders
12.3. MGUS and SMM
12.4. Improving our understanding of disease pathogenesis and response to therapy
13 - Monoclonal gammopathy of undetermined significance
13.1. MGUS definition and frequency
13.1.1. Light Chain MGUS
13.2. Risk factors for MGUS progression
13.2.1. Prognostic value of serum FLCs in MGUS
13.2.2. Prognostic value of Hevylite in MGUS
13.3. MGUS as the precursor condition for MM and related disorders
13.3.1. MGUS consistently precedes MM
13.3.2. Risk of MGUS progression to MM may change
13.3.3. MGUS is associated with increased mortality
13.3.4. Prior knowledge of MGUS improves multiple myeloma survival
14 - Smouldering multiple myeloma
14.1. Introduction
14.2. Monoclonal sFLCs and SMM progression
14.3. The prognostic value of HLC analysis at baseline
14.4. The prognostic value of changes in monoclonal protein concentration
15 - Light chain multiple myeloma
15.1. Diagnosis of light chain multiple myeloma
15.2. Monitoring light chain multiple myeloma
15.3. Prognostic value of the sFLC response in light chain multiple myeloma
16 - Nonsecretory multiple myeloma
16.1. Introduction
16.2. Diagnosis of nonsecretory multiple myeloma
16.3. Monitoring nonsecretory multiple myeloma
17 - Intact immunoglobulin multiple myeloma - monoclonal immunoglobulins at presentation
17.1. Introduction
17.2. Free light chains at diagnosis
17.3. International guidelines for the quantification of monoclonal immunoglobulins in IIMM
17.4. Limitations of electrophoresis
17.5. Limitations of total immunoglobulin measurements
17.6. Immunoglobulin HLC immunoassays (Hevylite) at diagnosis
18 - Intact immunoglobulin multiple myeloma - monitoring monoclonal immunoglobulins
18.1. Introduction
18.2. Current guidelines for monitoring IIMM
18.2.1. Detection of free light chain escape
18.2.2. Definition of a stringent complete response
18.3. Other uses of sFLC analysis in IIMM response assessment
18.3.1. Rapid assessment of response
18.3.2. Prediction of overall response
18.3.3. Early detection of ineffective therapy
18.3.4. Early detection of disease relapse
18.3.5. Monitoring patients treated with monoclonal antibody-based therapies
18.4. Monitoring IIMM patients using HLC assays
18.4.1. HLC assays are quantitative and non-subjective
18.4.2. HLC assays to monitor oligosecretory patients
18.4.3. HLC assays in MRD assessment
18.4.4. HLC assays improve detection of relapse
18.4.5. Discrepancies between HLC and IFE during follow-up
19 - Clonal evolution in multiple myeloma
19.1. Introduction
19.2. Clonal populations in multiple myeloma
19.3. Clonal changes and clonal escape in multiple myeloma
20 - Multiple myeloma prognosis
20.1. Introduction
20.2. sFLCs at diagnosis
20.2.1. sFLCs combined with the ISS
20.2.2. Association between sFLCs and other prognostic markers
20.3. sFLCs during response assessment
20.3.1. Normalisation of the sFLC ratio and importance of a sCR
20.3.2. Early sFLC response predicts outcome
20.3.3. Prognostic implications of relapse with FLCs
20.4. HLC analysis at diagnosis
20.5. HLC analysis during response assessment
20.6. Prognostic value of combining sFLC and HLC measurements
21 - Plasmacytoma
21.1. Introduction
21.2. Monoclonal proteins in solitary plasmacytoma
21.3. Prognostic factors in solitary plasmacytoma
21.4. Guideline recommendations
22 - Plasma cell leukaemia
22.1. Introduction
22.2. Diagnosis and monitoring of plasma cell leukaemia using sFLCs
23 - Screening studies using serum free light chain analysis
23.1. Introduction
23.2. Screening panels for the detection of monoclonal gammopathies
23.3. Incorporation of sFLC analysis into routine screening for monoclonal gammopathies
23.3.1 Screening for monoclonal gammopathy in patients presenting with renal dysfunction
23.3.2 Interpretation of borderline sFLC ratios
23.4. The sensitivity of abnormal sFLC ratios for Bence Jones proteinuria
23.5. Issues with urine compliance
23.6. Organisational and cost implications of screening algorithms
24 - Serum versus urine tests for free light chains
24.1. Introduction
24.2. Renal threshold for FLC excretion
24.3. Problems measuring urine samples
24.4. Urine compliance
24.5. Urine FLC immunoassays
24.6. Clinical benefits of sFLC analysis
24.7. Elimination of urine studies when screening for monoclonal gammopathies
24.8. Comparison of sFLCs and urinalysis for monitoring patients
24.9. Discrepant serum and urine results
24.10. Organisational cost savings and other benefits of sFLC analysis
24.11. Conclusions
25 - Guidelines for multiple myeloma and related disorders
25.1. Introduction
25.2. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma
25.2.1. Definition of multiple myeloma
25.2.2. Definition of smouldering multiple myeloma
25.2.3. Definition of monoclonal gammopathy of undetermined significance
25.3. International Myeloma Working Group guidelines
25.3.1. Guidelines for serum free light chain analysis in multiple myeloma and related disorders (2009)
25.3.2. Guidelines for monoclonal gammopathy of undetermined significance and smouldering multiple myeloma (2010)
25.3.3. Guidelines for standard investigative work-up of patients with suspected multiple myeloma (2011)
25.3.4. Guidelines for risk stratification in multiple myeloma (2011)
25.3.5. Consensus criteria for response and minimal residual disease assessment in multiple myeloma (2016)
25.3.6. Recommendations for global myeloma care (2013)
25.3.7. Recommendations for the diagnosis and management of myeloma-related renal impairment (2016)
25.4. European Society of Medical Oncology: clinical practice guidelines for diagnosis, treatment and follow-up of multiple myeloma (2017)
25.5. UK Myeloma Forum and Nordic Myeloma Study Group: guidelines for the investigation of newly detected monoclonal proteins and management of monoclonal gammopathy of undetermined significance (2009)
25.6. British Committee for Standards in Haematology Guidelines (2014)
25.7. National Institute for Health and Care Excellence Guideline 35: myeloma diagnosis and management (2016)
25.8. NCCN Clinical Practice Guidelines In Oncology (NCCN Guidelines®) for Multiple Myeloma V.2.2019
25.9. Management of multiple myeloma in Asia: resource-stratified guidelines
Diseases with monoclonal light chain deposition
26 - An overview of the kidney and monoclonal free light chains
26.1. Introduction
26.2. Renal clearance of free light chains
26.3. Renal impairment and free light chains
26.4. Nephrotoxicity of monoclonal FLCs
26.4.1. Monoclonal gammopathy of renal significance
27 - Cast nephropathy in multiple myeloma
27.1. Renal impairment in multiple myeloma
27.2. Screening for multiple myeloma in patients with unexplained AKI
27.3. Cast nephropathy
27.4. Light chain removal strategies in cast nephropathy
27.4.1. Plasma exchange
27.4.2. High cut-off haemodialysis
27.4.3. Haemodialysis and adsorption
27.5. Renal recovery is associated with reductions in FLCs
28 - AL amyloidosis
28.1. Introduction
28.2. Diagnosis of AL amyloidosis
28.2.1 Localised amyloid disease
28.3. Guidelines for the diagnosis of AL amyloidosis
28.3.1. International Myeloma Working Group (2009)
28.3.2. British Committee for Standards in Haematology (2015)
28.3.3 NCCN Clinical Practice Guidelines In Oncology (NCCN Guidelines®) for Systemic Light Chain Amyloidosis V.1.2019
28.4. Prognostic value of sFLCs at diagnosis
28.5 AL amyloidosis patients with distinct clinical features
28.5.1 Cardiac amyloidosis
28.5.2 Patients with low amyloidogenic FLCs
28.5.3 IgM AL amyloidosis
28.6. Monitoring patients with AL amyloidosis
28.7. Guidelines for monitoring AL amyloidosis
28.7.1. International Myeloma Working Group (2009)
28.7.2. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis (2012)
28.7.3. British Committee for Standards in Haematology (2015)
28.7.4. NCCN Clinical Practice Guidelines In Oncology (NCCN Guidelines®) for Systemic Light Chain Amyloidosis V.1.2019
28.8. Prognostic value of sFLC response
28.8.1. sFLC response predicting cardiac outcomes
28.8.2. sFLC response and renal outcome
28.9. SAP scintigraphy and sFLCs
28.10. Hevylite in AL amyloidosis
29 - Light chain deposition disease
29.1. Introduction
29.2. sFLC assays support a diagnosis of LCDD
29.3. Monitoring LCDD using sFLC assays
Other diseases with monoclonal or increased polyclonal FLCs
30 - An overview of other diseases with monoclonal or increased polyclonal immunoglobulins
30.1. Introduction
30.2. sFLCs in lymphoid malignancies
30.3. Hevylite in lymphoid malignancies
30.4. sFLCs as a biomarker of immune stimulation and inflammation
30.5. Cerebrospinal fluid FLCs and multiple sclerosis
30.6. sFLCs as a marker of mortality
31 - Lymphoma
31.1. Introduction
31.2. Hodgkin lymphoma
31.3. Non-Hodgkin lymphoma: diffuse large B-cell lymphoma
31.3.1. sFLCs and HLC in DLBCL
31.3.2. Prognostic value of sFLCs and HLCs in DLBCL
31.3.3. Use of sFLCs for monitoring DLBCL
31.4. Non-Hodgkin lymphoma: mantle cell lymphoma
32 - Waldenström's macroglobulinaemia
32.1. Introduction
32.2. IgM quantitation by routine laboratory tests
32.3. sFLCs in Waldenström's macroglobulinaemia
32.3.1. sFLCs and WM diagnosis
32.3.2. Monitoring WM using sFLCs
32.3.3. sFLC and WM prognosis
32.3.4. Guidelines for sFLC assessment in WM
32.4. IgM HLC in Waldenström's macroglobulinaemia
32.4.1. IgM HLC and WM diagnosis
32.4.2. Monitoring WM using IgM HLC
32.4.3. IgM HLC and WM prognosis
32.5. Use of sFLC and HLC analysis in IgM MGUS and asymptomatic WM
33 - Chronic lymphocytic leukaemia
33.1. Introduction
33.2. Monoclonal and polyclonal sFLCs in CLL
33.3. Prognostic value of sFLCs at baseline
33.4. Prognostic value of combined FLC measurements
33.5. Monitoring CLL with sFLCs
34 - Other diseases with abnormal immunoglobulin production
34.1. Introduction
34.2. Cryoglobulinaemia
34.3. Heavy chain diseases
34.4. POEMS syndrome
35 - Diseases with elevated polyclonal free light chains
35.1. Introduction
35.2. Chronic kidney disease
35.3. Cardiovascular disease
35.4. Rheumatic diseases
35.4.1. Systemic lupus erythematosus
35.4.2. Primary Sjögren’s syndrome
35.4.3. Rheumatoid arthritis
35.4.4. Systemic sclerosis
35.5. Diabetes mellitus
35.6. Human immunodeficiency virus
35.7. Allergies
35.8. Other diseases
35.8.1. Respiratory disease
35.8.2. Hepatitis C virus and liver disease
35.8.3. Renal transplantation
35.8.4. Post-transplant lymphoproliferative disorder
35.8.5. IgG4-related disease
35.9. FLCs as bioactive molecules in inflammatory diseases
35.10. General population studies
35.11. Conclusions
36 - Cerebrospinal fluid and free light chains
36.1. Introduction
36.1.1. Multiple sclerosis and intrathecal immunoglobulin synthesis
36.2. CSF FLCs as a marker of intrathecal immunoglobulin synthesis
36.3. Prognostic significance of CSF FLCs
36.4. Other applications of CSF FLC measurements
Instrumentation and external quality assurance
37 - Freelite and Hevylite immunoassay instrumentation
37.1. Overview
37.2. The Binding Site Optilite
37.2.1. Overview of Freelite and Hevylite assays on the Optilite
37.2.2. Freelite and Hevylite Precision on the Optilite
37.2.3. Freelite and Hevylite antigen excess detection on the Optilite
37.3. The Binding Site SPAPLUS
37.3.1. Overview of Freelite and Hevylite assays on the SPAPLUS
37.3.2. Freelite and Hevylite Precision on the SPAPLUS
37.3.3. Freelite and Hevylite antigen excess detection on the SPAPLUS
37.4. Other analytical platforms
38 - External quality assurance schemes for Freelite and Hevylite immunoassays
38.1. Introduction
38.2. The Binding Site schemes
38.2.1. QA003
38.2.2. QA003.H
38.3. United Kingdom National External Quality Assessment Service scheme
38.4. College of American Pathologists scheme
38.5. Randox International Quality Assessment scheme
38.6. German Institute for Standardisation scheme
39 - Frequently asked questions
39.1 Freelite
40 - Disclaimer
40.1. Disclaimer
40.2. Contact information